209.1 - X-Ray Diffraction (powder and solid forms) SRMs 656, 676a, 674b, 1878b and 1879a consist of high phase purity materials for use in the quantitative analysis of samples by the internal standard method. SRM 656 consists of 2 silicon nitride powders, one high in a, the other high in b. SRMs 640e, 660e, 675, and 1976b consist of materials with select crystallographic and microstructure properties used in the evaluation of diffraction equipment for the following variables; 1) d-spacing or line position, 2) line or instrument intensity, and 3) instrumental or sample contributions to the shape of reflection profiles. SRM 1976b, a sintered alumina plate, is also certified with respect to lattice parameters as well as 13 relative intensity values from 22° to 155° 2q (Cu Ka). SRM 1990 is certified for lattice parameter. SRM 1994 is certified for miss orientation of the crystal axis relative to the surface normal. PLEASE NOTE: The tables are presented to facilitate comparisons among a family of materials to help customers select the best SRM for their needs. For specific values and uncertainties, the certificate is the only official source. | SRM | 640e | 656 | 660c | 674b | 675 | 676a | 1878b | 1879a | 1976b | 1990 | 1994 | 1995 | 2000 | |-------------------------------|---|--|--|---|------------------------------------|--|--|----------------------------|--|--|---|---|---| | Description | Line Position and Line Shape Standard for Powder Diffraction (Silicon Powder) | Silicon
Nitride for
Quantitative
Analysis by
Powder
Diffraction | Line Position and Line Shape Standard for Powder Diffraction (Lanthanum Hexaboride Powder) | X-Ray Powder
Diffraction
Intensity Set
(Quantitative
Powder
Diffraction
Standard) | Line
Position,
Mica
(XRD) | Alumina
Powder
(Quantitative
Analysis
Powder
Diffraction
Standard) | Respirable
Alpha Quartz
(Quantitative
X-Ray
Powder
Diffraction
Standard) | Respirable
Cristobalite | Instrument
Response
Standard
for X-Ray
Powder
Diffraction | Single Crystal
Diffractometer
Alignment
Standard -
Ruby Sphere | Standard
Silicon Single
Crystal Wafer
for Crystalline
Orientation | Standard
Sapphire
Single Crystal
Wafer for
Crystalline
Orientation | Calibration
Standard for
High-Resolution
X-Ray Diffraction | | Unit Size | (7.5 g) | (2 x 10 g) | (6 g) | (10.00 g (powder)) | (7.5 g) | (20 g) | (5 g) | (5 g) | (1 disc) | (3 spheres) | (100-mm wafer) | (50-mm wafer) | (1 block) | | XRD
Application or
SAXS | Line Position
Line Shape | Quantitative
Analysis | Line Position
Line Shape | Quantitative Analysis | Line
Position -
Low 2θ | Quantitative
Analysis | Quantitative
Analysis | Quantitative
Analysis | | Quantitative
Analysis | Crystalline
Orientation | Crystalline
Orientation | Line Position | ⁻ Certified values are normal font ⁻ Reference values are italicized ⁻ Values in parentheses are for information only ## 209.1 - X-Ray Diffraction (powder and solid forms) SRMs 656, 676a, 674b, 1878b and 1879a consist of high phase purity materials for use in the quantitative analysis of samples by the internal standard method. SRM 656 consists of 2 silicon nitride powders, one high in a, the other high in b. SRMs 640e, 660e, 675, and 1976b consist of materials with select crystallographic and microstructure properties used in the evaluation of diffraction equipment for the following variables; 1) d-spacing or line position, 2) line or instrument intensity, and 3) instrumental or sample contributions to the shape of reflection profiles. SRM 1976b, a sintered alumina plate, is also certified with respect to lattice parameters as well as 13 relative intensity values from 22° to 155° 2q (Cu Ka). SRM 1990 is certified for lattice parameter. SRM 1994 is certified for miss orientation of the crystal axis relative to the surface normal. PLEASE NOTE: The tables are presented to facilitate comparisons among a family of materials to help customers select the best SRM for their needs. For specific values and uncertainties, the certificate is the only official source. | 2012 | 3600 | |--|---| | Calibration
Standard for
High-Resolution
X-Ray
Diffraction (200
mm Wafer) | Absolute
Intensity
Calibration
Standard
for
Small-Angle
X-ray
Scattering | | • | | | (wafer) | (coupon) | ⁻ Certified values are normal font ⁻ Reference values are italicized ⁻ Values in parentheses are for information only